

Technical Information according to AS 3600:2018 Schöck Dorn

September 2022

Telephone hotline for design support services Telephone: +49 7223 967-634 Fax: +49 7223 967-470 export@schoeck.com

Planning and consulting service

The engineers of Schöck's application engineering department would be very happy to advise you on static, structural and building-physics questions and will produce for you proposals for your solution with calculations and detailed drawings. For this please send your planning documentation (general arrangements, sections, static specifications) with the address of the building project to:

Schöck Bauteile GmbH

Schöckstraße 1 D-76534 Baden-Baden

Design support – for technical issues

Tel.: +49 (0) 7223 967-144 Fax: +49 (0) 7223 967-7634 E-Mail: export@schoeck.com

Marketing – for technical literature, brochures and price lists

Tel.: +49 (0) 7223 967-435 Fax: Product information E-Mail: export@schoeck.com

Product information

Information about our products is available online at www.schoeck.com

Terms and conditions of sale and delivery

The currently applicable terms and conditions of sale and delivery are available online at www.schoeck.com/conditions.

Notes | Symbols

Technical Information

- This Technical Information on the respective product application is valid only if complete and therefore may only be reproduced as a whole. With texts and graphics published solely as extracts there is a danger of communicating insufficient or even misleading information. Therefore dissemination is the sole responsibility of the user or the person carrying out the process!
- This Technical Information is valid solely for Australia and takes into account the country's specific approvals and standards.
- ▶ If the installation takes place in another country then the valid Technical Information of the respective country is to be applied.
- The current Technical Information is to be applied. A current version is available at: www.schoeck.com

Notes Symbols

\rm Hazard note

The triangle with exclamation mark indicates a hazard warning. This means there is a danger to life and limb if compliance is not observed.

🧾 Info

The square with an "i" indicates important information which, for example, must be read in conjunction with the design.

🗹 Check list

The square with a tick indicates the check list. Here, the essential points of the design are briefly summarised.

	Page
Summary of types	6
Planning principles	7
Expansion joints	7
Construction and design	8
Fire protection	10
Product programme	11
Schöck Dorn type SLD-Q	11

Summary of types

Schöck Dorn type SLD-Q

SLD-Q

This heavy duty dowel serves the transmission of high shear forces in bulding joints and with this enables free movement in the longitudinal and transverse direction to the dowel axis. Through the stiff anchoring body it is particularly suited for the connection of thin structural components.

Schöck fire protection collar BSM



BSM

The fire protection collar protects the dowel from direct flame encroachment and heat. Thus a classification of the shear force connection in the fire resistance class R120 is possible. With an appropriate joint configuration the requirements of fire resistance class RE1120 can be met.

Page 11

Page 10

Scheduled expansion joints | Schöck Dorn solution

Fig. 1: Gebäudefuge – Dehnfuge durchtrennt das gesamte Gebäude

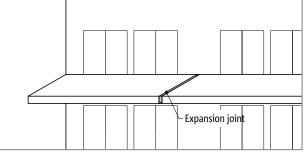
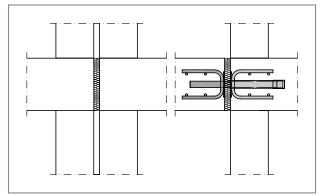



Fig. 2: Bauteilfuge – Dehnfuge teilt nur einzelne Bauteile

Scheduled expansion joints

In long concrete structural components, due to temperature elongation, shrinkage, swelling or creeping of the concrete, considerable forced stresses can arise. These stresses lead to cracks or other structural damage. For this reason expansion joints are arranged in order to enable a zero-stress deformation of the structural components. These expansion joints can separate complete parts of a building or only individual structural components. A typical structural component expansion joint is, for example, positioned in long balconies. On the other hand, with a building expansion joint, attention must be paid that all structural components are seperated by a joint.

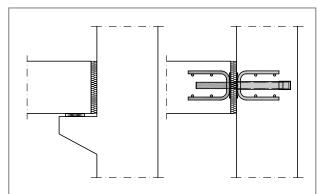


Fig. 3: Expansion joint using a Schöck Dorn instead of a twin column or double wall

Fig. 4: Expansion joint using a Schöck Dorn instead of a support corbel

Schöck Dorn solution

In the area of the joint the structural components separated by the joint must be supported. Furthermore, different deformations of the building parts are also to be avoided. Conventionally, for this, corbels with slide bearings or a double arrangement of the load bearing walls and columns have been used at the structural component joint. These solutions are expensive to reinforce and to form. In addition, they require space which limits later development and usage.

Using the Schöck Dorn, horizontal movements are enabled and vertical loads transmitted. This system offers many advantages:

- Simpler formwork and reinforcement management
- > Better use of space through doing away with double supports and corbels
- Production in one or in separate building phases possible
- Schöck Dorn type SLD-Q (heavy duty dowel) with general building supervisory approval Z-15.7-236
- User-friendly design program for free download at www.schoeck.com
- ▶ Joint configuration in fire resistance class R120 possible
- Secure and maintenance-free connection through the employment of high-grade stainless steels

Connection situations

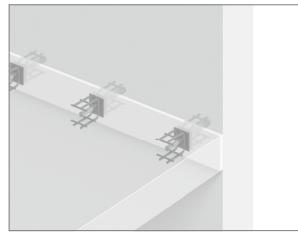


Fig. 5: Schöck Dorn type SLD-Q: Connection slab-wall

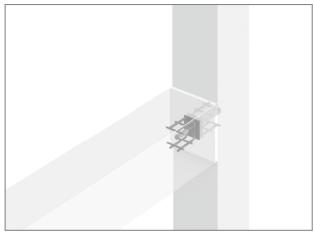


Fig. 7: Schöck Dorn: Connection beam-column

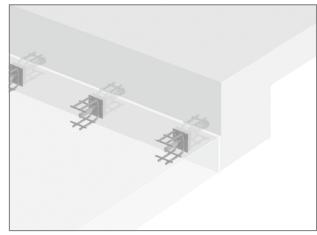


Fig. 6: Schöck Dorn type SLD-Q: Connection slab-downstand beam

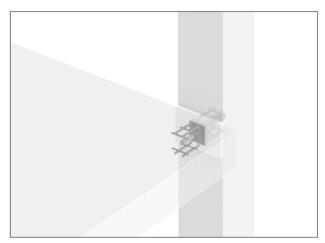
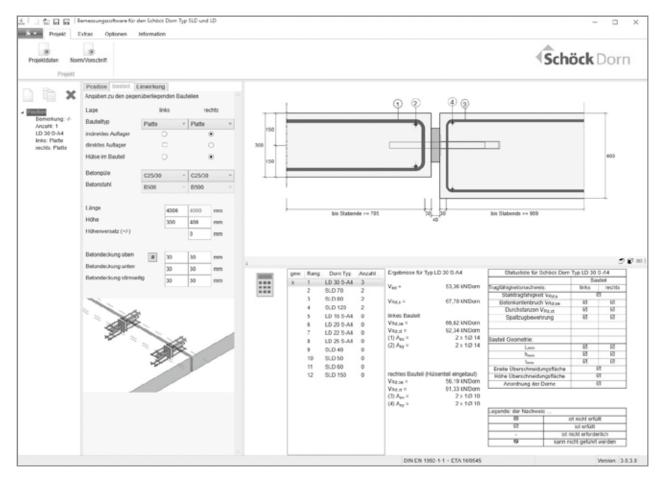



Fig. 8: Schöck Dorn: Connection slab-column

Design software

The Schöck Dorn software allows a simple and rapid design of expansion joints using the Schöck Dorn type SLD-Q.

- Design takes place in accordance with approvals and AS 3600
- Many different application cases are verifiable (slab-slab, slab-wall, slab-downstand beam, etc.)
- Automatic determination of the dowel spacings and dowel types
- Flexible load input through distributed loads, triangular loads or with free arrangement
- Automatic determination and graphic representation of the edge reinforcement
- Easy transfer of the design results onto the drawing through dxf output
- Free download without registration

Fire protection sleeve

Schöck fire protection collar BSM

Using the Schöck fire protection collar the joint design with the Schöck Dorn type SLD-Q can be configured in a fire resistance class R120. This sleeve consists of an incombustible mineral fibre plate with a 2 mm thick Promaseal[®] PL strip. In the case of fire the Promaseal[®] expands in order to close an air gap in the joint of up to 10 mm and thus to protect the dowel. Thus no further cladding of the joint is necessary.

Depending on the planned joint width the fire protection collar is available with a thickness of 20 or 30 mm. For larger joint widths several fire protection collars can be combined.

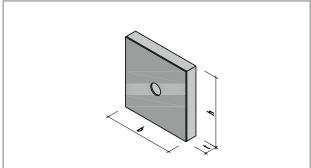


Fig. 9: Configuration of the Schöck fire protection collar

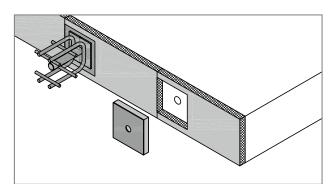
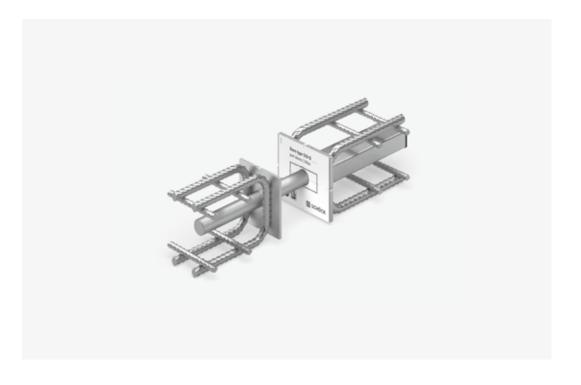
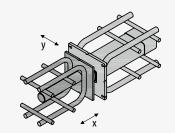



Fig. 10: Configuration of the Schöck fire protection collar in the joint

Fire protection sleeve for Schöck Dorn	Thickness	Height	Width		
type SLD-Q	Dimension [mm]				
SLD-Q 40-150 BSM 0	2.5	170	190		
SLD-Q 40/50 BSM 20	20	120	150		
SLD-Q 40/50 BSM 30	30	120	150		
SLD-Q 60/70 BSM 20	20	150	160		
SLD-Q 60/70 BSM 30	30	100	100		
SLD-Q 80 BSM 20	20	170	190		
SLD-Q 80 BSM 30	30	170	190		
SLD-Q 120/150 BSM 20	20	250	250		
SLD-Q 120/150 BSM 30	30	2.30	250		

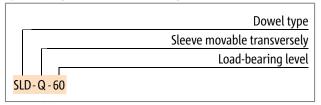
Schöck Dorn type SLD-Q


Schöck Dorn type SLD-Q

Heavy duty dowel for the transmission of high shear forces between thin concrete structural components with freedom of movement along and transverse to the dowel axis.

Product characteristics | Application areas

Schöck Dorn type SLD-Q


Page 11

SLD-Q

This heavy duty dowel serves the transmission of high shear forces in bulding joints and with this enables free movement in the longitudinal and transverse direction to the dowel axis. Through the stiff anchoring body it is particularly suited for the connection of thin structural components.

Type designations in planning documents

Product characteristics

The Schöck Dorn type SLD-Q (heavy duty dowel) consists of a sleeve part and a dowel part, which are concreted into the respective building components adjacent to the joint. The dowel transmits the loads from one structural component through bending in the sleeve and thus into the other structural component. With this, the welded-on stirrups and the front plate ensure an optimum anchoring of the concrete.

The sleeve of the Schöck Dorn type SLD-Q has a rectangular tube allowing the round dowel to move in the axial direction and transversely. This enables the transmission of vertical forces in the joint and simultaneous moveability in all horizontal directions. This prevents constraints due to temperature deformation and shrinkage.

Application areas

The Schöck Dorn type SLD-Q is tested and approved for the transmission of mainly statically relevant shear forces in expansion joints. The approval Z-15.7-236 from the German Institute for Structural Engineering (DIBt) regulates the design for normal reinforced concrete. The joint widths can vary between 10 and 60 mm. The sleeve of the Schöck Dorn type SLD-Q is designed for a horizontal displacement of \pm 12 mm. Dowel and sleeve consist of stainless steels of the material numbers 1.4362, 1.4571 as well as 1.4404. All dimensions, reinforcement and geometry tables below apply according to AS 3600. The concrete load-bearing resistance were determined with a concrete cover of 30 mm.

Minimum dowel spacing/component dimensions

Schöck Dorn type SLD-Q	40	50	60	70	80	120	150
Minimum component dimensions			D	imension [mr	n]		
Slab thickness h _{min}	160	160	180	200	240	300	350
Wall thickness b _w	200	210	215	250	305 + c _{nom}	460 + c _{nom}	540 + c _{nom}
Beam width b _u	240	240	270	300	360	450	530
Minimum dowel spacing							
Horizontal e _{h,min}	240	240	270	300	360	450	530
Vertical e _{v,min}	120	120	140	160	200	215	235
Minimum edge distance							
Horizontal e _{R,min}	120	120	135	150	180	225	265

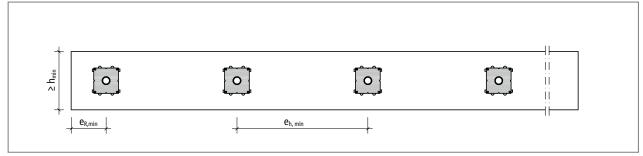


Fig. 11: Schöck Dorn type SLD-Q: Minimum structural component dimensions and dowel spacings in a slab

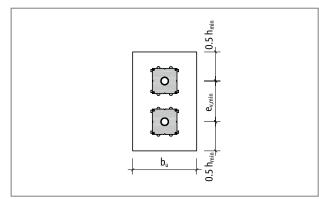


Fig. 12: Schöck Dorn type SLD-Q: Minimum structural component dimensions and dowel spacings in the front face of a beam or wall

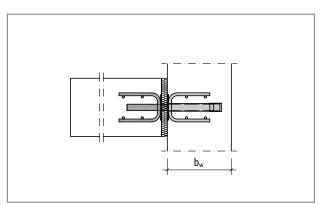


Fig. 13: Schöck Dorn type SLD-Q: Minimum structural component thickness of a wall or column

Critical dowel spacings/edge distances

With the observation of the critical edge distances and dowel spacings no mutual influencing of the punching cone is to be taken into account. The design table on page 18 is based on these spacings. Should these spacings be undercut an additional punching shear design taking into account the shortened perimeter is required.

The maximum dowel spacing is limited in the Product Standard ETAG 030 to 8 times the slab height.

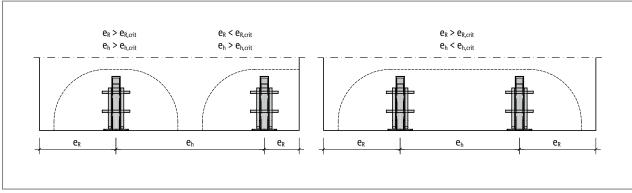
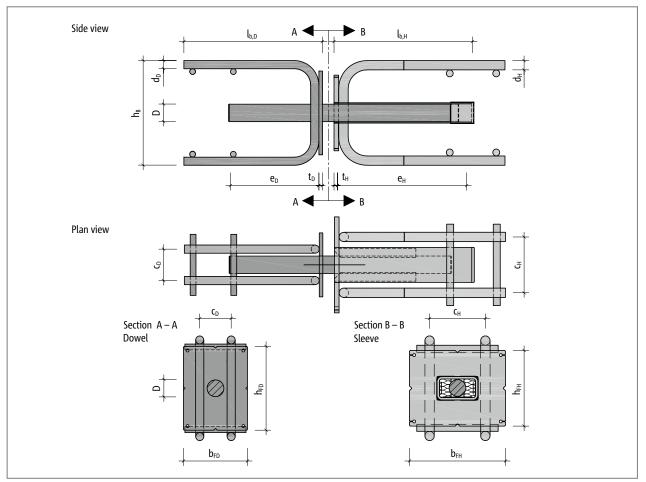
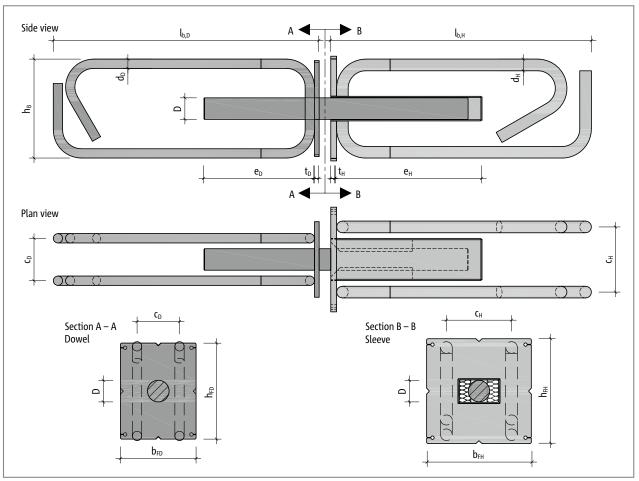



Fig. 14: Schöck Dorn type SLD-Q: Circular cut depending on critical dowel spacing and edge separation

Schöck Dorn type SLD-Q	40	50	60	70	80	120	150
Slab thickness [mm]			Critical do	owel spacings	e _{h,crit} [mm]		
160	455	455	-	-	-	-	-
180	500	500	515	-	-	-	-
200	545	545	565	585	-	-	-
220	590	590	610	630	-	-	-
250	725	725	675	695	730	-	-
280	815	815	815	765	795	-	-
300	875	875	875	885	840	915	-
350	1025	1025	1025	1035	955	1065	1075
Slab thickness [mm]			Critical ed	dge distances	e _{R,crit} [mm]		
160	360	360	-	-	-	-	-
180	395	395	405	-	-	-	-
200	430	430	445	455	-	-	-
220	465	465	480	495	-	-	-
250	570	570	530	545	570	-	-
280	640	640	640	600	620	-	-
300	690	690	690	695	655	705	-
350	805	805	805	815	745	825	825


Product description SLD-Q 40–80

15: Schöck Dorn type SLD-Q 40 to SLD-Q 80: Dimensions

Schöck Dorn type SLD-Q		40	50	60	70	80		
Dowel part			Dimensions [mm]					
Diameter dowel	D	22	22	24	27	30		
Dowel anchoring depth	e _D	100	115	130	145	155		
Diameter Stirrup	d₀	10	10	12	12	14		
Stirrup height	h _B	100	100	120	140	180		
Stirrup length	l _{b,D}	146	146	169	220	238		
Stirrup spacing	CD	42	42	46	49	54		
End plate thickness	t _D	4	4	4	5	6		
End plate height	h _{FD}	85	87	117	129	144		
End plate width	b _{FD}	65	85	85	95	110		
Sleeve part								
Sleeve length	ен	165	180	195	211	221		
Diameter Stirrup	d _H	10	12	12	14	16		
Stirrup length	l _{b,H}	168	175	171	214	294		
Stirrup spacing	C _H	76	78	82	86	96		
End plate thickness	t _H	5	6	6	8	8		
End plate height	h _{FH}	95	95	110	110	130		
End plate width	b _{FH}	105	110	120	130	165		

Product description SLD-Q 120–150

16: Schöck Dorn type SLD-Q 120, SLD-Q 150: Dimensions

Schöck Dorn type SLD-Q		120	Q 150			
Dowel part		Dimensions [mm]				
Diameter dowel	D	37	42			
Dowel anchoring depth	e _D	190	230			
Diameter Stirrup	d⊳	16	20			
Stirrup height	h₅	170	210			
Stirrup length	l _{b,D}	457	458			
Stirrup spacing	CD	73	82			
End plate thickness	t _D	8	10			
End plate height	h _{FD}	165	180			
End plate width	b _{FD}	130	145			
Sleeve part						
Sleeve length	ен	258	302			
Diameter Stirrup	d _H	20	25			
Stirrup length	l _{b,H}	448	536			
Stirrup spacing	C _H	112	122			
End plate thickness	t _H	10	10			
End plate height	h _{FH}	180	210			
End plate width	b _{FH}	180	200			

Design SLD-Q f'c 32MPa / f'c 40MPa

Design resistance V_{Rd} = min [steel load-bearing capacity $V_{Rd,s}$, concrete edge resistance $V_{Rd,c}$, punching shear resistance $V_{Rd,c1}$]

The following design values have been determined in accordance with AS 3600 with a concrete cover of 30 mm. With higher concrete cover the load-bearing capacity for a correspondingly reduced slab height must be applied. The maximum load-bearing capacities listed here apply only in connections with a reinforcement arrangement in accordance with pages 20 or 21 and under observation of the critical dowel spacing or edge distance in accordance with page 15.

Schöck Dorn	type SLD-Q	40	50	60	70	80	120	150
Slab thickness [mm]	Joint width [mm]		Design r	esistances V _{Rd}	, f'c 32MPa /	f'c 40MPa [kN	/dowel]	
	10	57.8	57.8					
	20	57.8	57.8					
	30	50.2	57.8					
160	40	37.6	50.1					
	50	30.1	40.1					
	60	25.1	33.4					
	10	63.1	63.1	65.6				
	20	63.1	63.1	65.6				
400	30	50.2	63.1	65.6				
180	40	37.6	50.1	65.0				
	50	30.1	40.1	52.0				
	60	25.1	33.4	43.4		_		
	10	68.3	68.3	92.7	111.4			
	20	67.6	68.3	92.7	111.4			
200	30	50.2	66.4	84.8	111.4	-		
200	40	37.6	50.1	65.0	92.6	-		
	50	30.1	40.1	52.0	74.1			
	60	25.1	33.4	43.4	61.7			
	10	73.4	97.0	100.7	158.3			
	20	67.6	85.6	100.7	139.6	-		
220	30	50.2	66.4	84.8	116.1			
220	40	37.6	50.1	65.0	92.6			
	50	30.1	40.1	52.0	74.1			
	60	25.1	33.4	43.4	61.7			
	10	80.8	102.5	112.3	163.1	204.3		
	20	67.6	85.6	105.7	139.6	178.2		
250	30	50.2	66.4	84.8	116.1	152.0		
250	40	37.6	50.1	65.0	92.6	125.9		
	50	30.1	40.1	52.0	74.1	101.6		
	60	25.1	33.4	43.4	61.7	84.7		
	10	85.0	102.5	123.6	163.1	204.3		
	20	67.6	85.6	105.7	139.6	178.2		
200	30	50.2	66.4	84.8	116.1	152.0		
280	40	37.6	50.1	65.0	92.6	125.9		
	50	30.1	40.1	52.0	74.1	101.6		
	60	25.1	33.4	43.4	61.7	84.7		

Design SLD-Q f'c 32MPa / f'c 40MPa

Schöck Dorn	type SLD-Q	40	50	60	70	80	120	150
Slab thickness [mm]	Joint width [mm]		Design r	esistances V _R	₄, f'c 32MPa /	f'c 40MPa [kN	/dowel]	1
	10	85.0	102.5	126.6	163.1	204.3	238.4	
	20	67.6	85.6	105.7	139.6	178.2	238.4	
200	30	50.2	66.4	84.8	116.1	152.0	238.4	
300	40	37.6	50.1	65.0	92.6	125.9	221.6	
	50	30.1	40.1	52.0	74.1	101.6	189.4	
	60	25.1	33.4	43.4	61.7	84.7	158.9	
	10	85.0	102.5	126.6	158.3	204.3	262.7	328.9
	20	67.6	85.6	105.7	139.6	178.2	262.7	328.9
250	30	50.2	66.4	84.8	116.1	152.0	253.8	328.9
350	40	37.6	50.1	65.0	92.6	125.9	221.6	305.3
	50	30.1	40.1	52.0	74.1	101.6	189.4	268.7
	60	25.1	33.4	43.4	61.7	84.7	158.9	232.2
	10	85.0	102.5	126.6	163.1	204.3	270.7	372.0
	20	67.6	85.6	105.7	139.6	178.2	270.7	372.0
400	30	50.2	66.4	84.8	116.1	152.0	253.8	341.9
400	40	37.6	50.1	65.0	92.6	125.9	221.6	305.3
	50	30.1	40.1	52.0	74.1	101.6	189.4	268.7
	60	25.1	33.4	43.4	61.7	84.7	158.9	232.2
	10	85.0	102.5	126.6	163.1	198.5	265.7	372.0
	20	67.6	85.6	105.7	139.6	178.2	265.7	372.0
450	30	50.2	66.4	84.8	116.1	152.0	253.8	341.9
450	40	37.6	50.1	65.0	92.6	125.9	221.6	305.3
	50	30.1	40.1	52.0	74.1	101.6	189.4	268.7
	60	25.1	33.4	43.4	61.7	84.7	158.9	232.2
	10	85.0	102.5	126.6	163.1	204.3	270.7	372.0
	20	67.6	85.6	105.7	139.6	178.2	270.7	372.0
E00	30	50.2	66.4	84.8	116.1	152.0	253.8	341.9
500	40	37.6	50.1	65.0	92.6	125.9	221.6	305.3
	50	30.1	40.1	52.0	74.1	101.6	189.4	268.7
	60	25.1	33.4	43.4	61.7	84.7	158.9	232.2

On-site reinforcement

Schöck Dorn type SLD-Q	Slab thickness	40	50	60	70	80
	≤ 200	2 • 3 • N12	2 • 3 • N12	2 • 3 • N12	2 • 2 • N16	
A (≤ 300	2 • 2 • N12	2 • 3 • N12	2 • 3 • N12	2 • 3 • N16	2 • 3 • N16
A _{sx} (right / left)	≤ 400	2 • 2 • N12	2 • 2 • N12	2 • 3 • N12	2 • 3 • N16	2 • 3 • N16
	≤ 500	2 • 2 • N12	2 • 2 • N12	2 • 2 • N12	2 • 2 • N16	2 • 2 • N16
	≤ 200	2•6•N12	2 • 6 • N12	2 • 6 • N12	2 • 6 • N16	
A (ten / hettem)	≤ 300	2 • 4 • N12	2 • 4 • N12	2 • 6 • N12	2 • 6 • N16	2 • 8 • N16
A _{sy} (top / bottom)	≤ 400	2 • 3 • N12	2 • 3 • N12	2 • 4 • N12	2 • 6 • N16	2 • 8 • N16
	≤ 500	2 • 2 • N12	2 • 2 • N12	2 • 3 • N12	2 • 4 • N16	2 • 6 • N16

Schöck Dorn type SLD-Q	40	50	60	70	80
s₁ for slab thickness ≤ 300 mm	30	32	34	32	36
s ₁ for slab thickness > 300 mm	50	50	50	50	50
Si	50	50	50	50	50
Pos. 1	2 • N8				
e1e1	65	80	95	105	115
l _{c1} SLD Q	92	98	106	111	122

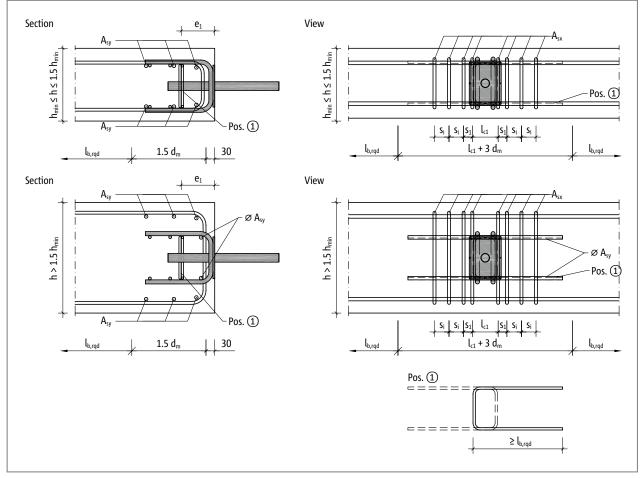


Fig. 17: Schöck Dorn type SLD-Q 40 to SLD-Q 80: On-site reinforcement

On-site reinforcement

Schöck Dorn type SLD-Q	Slab thickness	120	150
	≤ 200		
A (viaht / laft)	≤ 300	2 • 5 • N16	
A _{sx} (right / left)	≤ 400	2 • 5 • N16	2 • 6 • N20
	≤ 500	2 • 3 • N16	2 • 4 • N20
	≤ 200		
A (ten (bettern))	≤ 300	2 • 10 • N20	
A _{sy} (top / bottom)	≤ 400	2 • 10 • N16	2 • 10 • N20
	≤ 500	2 • 6 • N16	2 · 10 · N20

Schöck Dorn type SLD-Q	120	150
s₁ for slab thickness ≤ 300 mm	50	50
s ₁ for slab thickness > 300 mm	50	50
S ₁	50	50
Pos. 1	2 • N10	2 · N12
e ₁	150	185
l _{c1} SLD Q	151	171

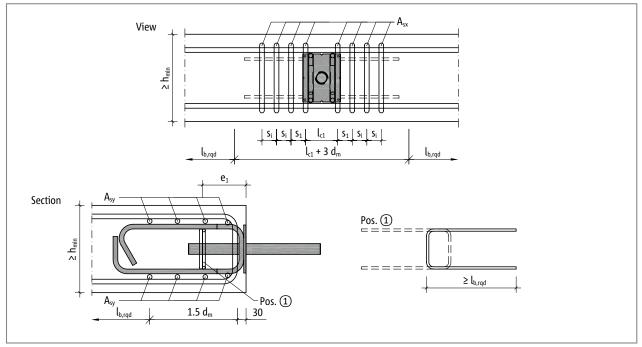


Fig. 18: Schöck Dorn type SLD-Q 120, SLD-Q 150: On-site reinforcement

On-site reinforcement

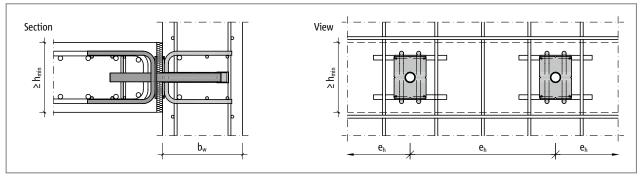


Fig. 19: Schöck Dorn type SLD-Q: On-site reinforcement for floor-wall connection

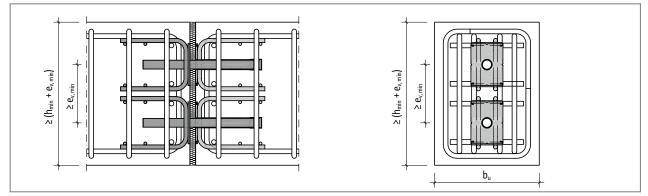


Fig. 20: Schöck Dorn type SLD-Q: On-site reinforcement for beam connection

Verification of the load-bearing capacity | steel load-bearing capacity

Verification of the load-bearing capacity in accordance with approval document Z-15.7-236

The load-bearing capacity of an expansion joint connection using the Schöck Dorn type SLD-Q is determined as being the minimum verifiable resistance to punching through shear failure, concrete edge failure and steel load-bearing resistance.

	V _{Ed}	$\leq V_{Rd}$
	V _{Rd}	$= \min \left(V_{Rd,ct}; V_{Rd,c}; V_{Rd,s} \right)$
with:	V _{Ed}	- design value of the effective shear force
	V _{Rd}	- design resistance of the dowel connection
	$V_{Rd,ct}$	- design resistance against punching shear failure
	V _{Rd,c}	- design resistance against concrete edge failure
	V _{Rd,s}	- design resistance against steel failures of the dowel

These verifications are necessary if the constraints for the design tables are not observed. The punching shear design must be conducted if the critical spacings according to page 15 are undercut or the on-site reinforcement according to page 20 has been modified. The load-bearing capacity of the concrete edge must, in addition, be checked if the on-site reinforcement deviates from the recommendations on page 20.

Steel load-bearing capacity in accordance with approval document Z-15.7-236

The steel load-bearing capacity of the Schöck Dorn type SLD-Q is determined from the minimum of the load-bearing capacities of the welded-on stirrups, the welded seams, the end plate and the dowel. It is thus independent of the surrounding concrete. The load-bearing capacity is always relevant in structural components in which concrete edge and punching shear failure can be ruled out. This is the case, for example, in walls or columns.

Schöck Dorn type SLD-Q	40	50	60	70	80	120	150
Joint width [mm]	Steel load-bearing capacity V _{Rd,s} [kN]						
10	76.5	94.3	113.9	146.8	183.8	270.7	372.0
20	60.8	77.0	95.1	125.6	160.3	257.4	340.6
30	45.2	59.8	76.3	104.5	136.8	228.4	307.7
40	33.9	45.1	58.5	83.3	113.3	199.4	274.8
50	27.1	36.1	46.8	66.7	91.5	170.5	241.9
60	22.6	30.1	39.0	55.6	76.2	143.0	209.0

Punching shear design

Punching shear design in accordance with approval document Z-15.7-236

The punching shear design in accordance with approval document Z-15.7-236, in deviation from the standard AS 3600, is carried out with a spacing of 1.5d.

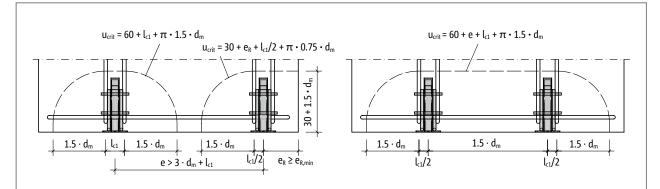


Fig. 21: Schöck Dorn type SLD-Q: Lengths of the perimeter for the punching shear design dependent on the dowel spacings

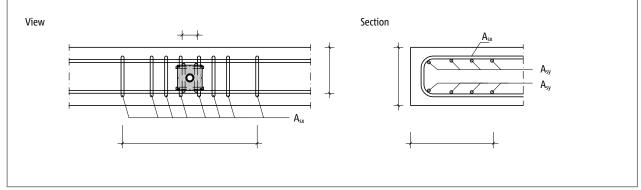


Fig. 22: Schöck Dorn type SLD-Q: Dimensions of the punching area

Punching shear resistance:

with:

= $0.14 \cdot \eta_1 \cdot \kappa \cdot (100 \cdot \rho_l \cdot f_{ck})^{1/3} \cdot d_m \cdot u_{crit}/\beta$ $V_{\text{Rd,ct}}$ = 1.0 for standard concrete η_1 $= 1 + (200 / d_m)^{1/2} \le 2.0$ κ - mean static effective depth [mm] d_{m} $d_{m} = (d_{x} + d_{y}) / 2$ - reinforcement ratio of longitudinal reinforcement within the perimeter ρ_l $\rho_{l} = (\rho_{x} \cdot \rho_{y})^{1/2} \le 0.5 \cdot f_{cd} / f_{yd} \le 0.02$ $\rho_x = A_{sx} / (d_x \cdot b_y)$ $\rho_v = A_{sv} / (d_v \cdot b_x)$ - characteristic compression strength of the concrete \mathbf{f}_{ck} - coefficient for consideration of non-uniform load application; with dowels at the corβ ners 1.5, otherwise 1.4 - length of the critical perimeter (see diagram) U_{crit}

Concrete edge failure

Verification against concrete edge failure in accordance with approval document Z-15.7-236

The verification against concrete edge failure is a product-specific verification and is based on the evaluation of tests. For the verification, the load-bearing capacity is calculated with the aid of the suspended reinforcement on both sides of the dowel. However, only the legs of the suspended reinforcement may be taken into account, whose effective anchoring length (l'_i) in the breakout cone is greater than zero. Otherwise these legs are too far from the dowel and are thus ineffective.

$$V_{\text{Rd,ce}} = (\Sigma V_{\text{Rd,1,i}} + \Sigma V_{\text{Rd,2,i}}) \cdot f_{\mu} \leq \Sigma A_{\text{sx,i}} \cdot f_{\text{yd}} \cdot f_{\mu}$$

$$f_{\mu} = 0.9$$
 for type SLD-Q

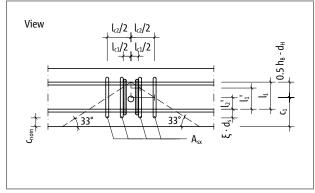


Fig. 23: Schöck Dorn type SLD: Dimensions of the breakout cone of the concrete edge

V_{Rd,1,i}

 ψ_i

$V_{Rd,1,i}$ - hook load-bearing capacity of a stirrup alongside the dowel

= $0.357 \cdot \psi_i \cdot A_{sx,i} \cdot f_{yk} \cdot (f_{ck} / 30)^{1/2} / \gamma_c$

with:

- coefficient to take into account the spacing of the suspended reinforcement of the dowel $\psi_i = 1 - 0.2 \cdot (l_{ci}/2)/c_1$ $l_{ci}/2$ = distance $A_{sx,i}$ from dowel, of the suspended reinforcement considered

 l_{c1} - distance of the first stirrup row of the dowel, see page 20

 c_1 - edge separation starting from the dowel centre up to the free edge

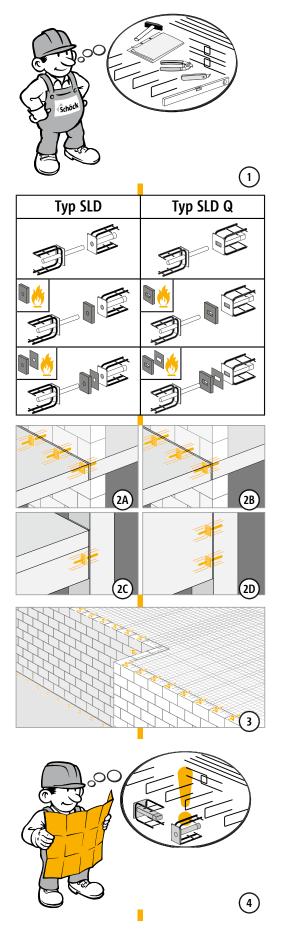
- cross-section of a leg of the suspended reinforcement in the breakout cone
- characteristic yield strength of the suspended reinforcement
- characteristic compression strength of the concrete
- $-\gamma_{c} = 1.5$

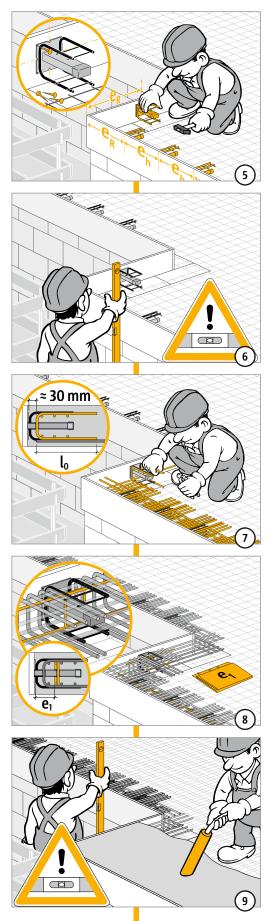
V_{Rd,2,i} - bond resistance of a stirrup alongside the dowel V_{Rd,2,i}

 $A_{sx,i}$

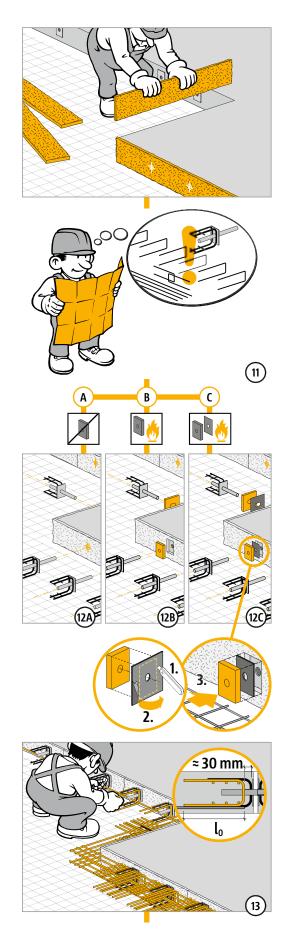
 \mathbf{f}_{yk}

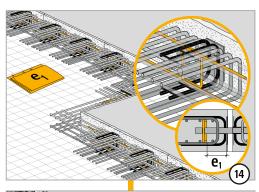
 f_{ck}

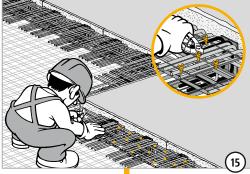

γc


=π•	ds•	ľi•	\mathbf{f}_{bd}
-----	-----	-----	-------------------

with:


ds - diameter of the suspended reinforcement in [mm] Ľ - effective anchoring length of the suspended reinforcement in the breakout cone $l'_{i} = l_{1} - (l_{ci} / 2) \cdot \tan 33^{\circ}$ $l_{ci}/2$ - distance $A_{sx,i}$ from dowel of the suspended reinforcement considered $l_1 = h / 2 + (0.5 \cdot h_b - d_h) - \xi \cdot d_s - c_{nom}$ ξ = 3 for d_s \leq 16 mm $\xi = 4.5$ for d_s > 16 mm h_b, d_h - dimensions of the Schöck Dorn type SLD-Q, see page 16 and 17 c_{nom} - concrete cover of the suspended reinforcement - design value of the bond resistance between reinforcing steel and concrete f_{bd}


Installation instructions



Installation instructions

Imprint

Published by: Schöck Bauteile GmbH Schöckstraße 1 76534 Baden-Baden Telephone: +49 7223 967-0

Copyright: © 2022, Schöck Bauteile GmbH The contents of this publication must not be passed on to third parties, neither in full nor in part, without the written authorisation of Schöck Bauteile GmbH. All technical details, drawings etc. are protected by copyright laws.

Date of publication: September 2022

Schöck Bauteile GmbH Schöckstraße 1 76534 Baden-Baden Telefon: +49 7223 967-144 export@schoeck.com www.schoeck.com

804984/09.2022/EN-AU/220643